Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.22.21262447

ABSTRACT

The ongoing SARS-CoV-2 (Covid-19) pandemic has ushered an unforeseen level of global health and economic burden. As a respiratory infection, Covid-19 is known to have a dominant airborne transmission modality, wherein fluid flow plays a central role. Quantification of complex non-intuitive dynamics and transport of pathogen laden respiratory particles in indoor flows has been of specific interest. Here we present a Lagrangian computational approach towards quantification of human-to-human exposure quantifiers, and identification of pathways by which flow organizes transmission. We develop a Lagrangian viral exposure index in a parametric form, accounting for key parameters such as building and layout, ventilation, occupancy, biological variables. We also employ a Lagrangian computation of the Finite Time Lyapunov Exponent field to identify hidden patterns of transport. A systematic parametric study comprising a set of 120 simulations, yielding a total of 1,320 different exposure index computations are presented. Results from these simulations enable: (a) understanding the otherwise hidden ways in which air flow organizes the long-range transport of such particles; and (b) translating the micro-particle transport data into a quantifier for understanding infection exposure risks.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.21.21255898

ABSTRACT

Some infectious diseases, including COVID-19, can be transmitted via aerosols that are emitted by an infectious person and inhaled by susceptible individuals. Although physical distancing effectively reduces short-range airborne transmission, many infections have occurred when sharing room air despite maintaining distancing. We propose two simple parameters as indicators of infection risk for this situation. They combine the key factors that control airborne disease transmission indoors: virus-containing aerosol generation rate, breathing flow rate, masking and its quality, ventilation and air cleaning rates, number of occupants, and duration of exposure. COVID-19 outbreaks show a clear trend in relation to these parameters that is consistent with an airborne infection model, supporting the importance of airborne transmission for these outbreaks. The observed trends of outbreak size vs. risk parameters allow us to recommend values of the parameters to minimize COVID-19 indoor infection risk. All of the pre-pandemic spaces are in a regime where they are highly sensitive to mitigation efforts. Measles outbreaks occur at much lower risk parameter values than COVID-19, while tuberculosis outbreaks are observed at much higher risk parameter values. Since both diseases are accepted as airborne, the fact that COVID-19 is less contagious than measles does not rule out airborne transmission. It is important that future outbreak reports include ventilation information, to allow expanding our knowledge of the circumstances conducive to airborne transmission of different diseases.


Subject(s)
COVID-19 , Infections , Tuberculosis , Communicable Diseases
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.04.20143123

ABSTRACT

BackgroundIsolation space must be expanded during pandemics involving airborne transmission. Little to no work has been done to establish optimal design strategies and implementation plans to ease surge capacity and expand isolation capacity over long periods in congregate living facilities. The COVID-19 pandemic has an airborne transmission component and requires isolation, which is difficult to accomplish in skilled nursing facilities. PurposeIn this study we designed, implemented, and validated an isolation space at a skilled nursing facility in Lancaster, PA. The overall goal was to minimize disease transmission between residents and staff within the facility. Basic ProceduresWe created an isolation space by modifying an existing HVAC system of the SNF. We measured pressure on-site and performed computational fluid dynamics and Lagrangian particle-based modeling to test containment and possible transmission extent given the isolation space is considered negative rather than individual rooms. Main FindingsPressure data shows the isolation space maintained an average hourly value of (standard deviation) -2.3 Pa (0.12 Pa) pressure differential between it and the external hallway connected to the rest of the facility. No transmission of SARS-CoV-2 between residents isolated to the space occurred, nor did any transmission to the staff or other residents occur. The isolation space was successfully implemented and, as of writing, continues to be operational through the pandemic. HighlightsO_LINegative pressure isolation space is an effective method to meet needed surge capacity during the COVID-19 pandemic and future pandemics C_LIO_LIPlanning for how and where to rapidly create a negative pressure isolation space is needed in congregate living areas such as skilled nursing facilities C_LIO_LIThis demonstration shows the feasibility of using low-cost and in-house systems to quickly create negative pressure within a skilled nursing facility hallway and to maintain these conditions, minimizing disease transmission between residents and staff C_LI


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL